
Data Science and Meet the 
Expert Webinar Series

June 26, 2025

NIDDK-CR Resources for Research



NIDDK Central Repository Overview

Imaging Data Files Clinical Datasets Biospecimens

Registered Users Weekly Users Public Releases

15.8 M >8,400 
from 189 clinical studies

>16 M

6,889 >5,000 >875

Established in 2003 to facilitate sharing of data, 
biospecimens, and other resources generated from 
studies supported by NIDDK and within NIDDK’s mission by 
making these resources available for request to the 
broader scientific and research community.

• Supports receipt and distribution of data and 
biospecimens in a manner that is ethical, equitable, and 
efficient

• Enables investigators not involved with the original work 
to test new hypotheses without the need to collect new 
data or biospecimens

• Promotes FAIR (Findable, Accessible, Interoperable, and 
Reusable) and TRUST (Transparency, Responsibility, User 
focus, Sustainability, and Technology) principles

Mission

Recorded past tutorials, webinars, and other educational 
resources can be found on the NIDDK-CR website



NIDDK Data Sharing Ecosystem

The NIDDK-CR is a part of the broader NIH-funded biomedical data ecosystem and plays a key role in NIH’s FAIRness 
and TRUSTworthiness goals. The NIDDK-CR houses a broad range of data types for secondary research, provides 
access to biospecimens, and direct links to other repositories with additional resources such as genomics data.



Streamlining end-to-end data science lifecycle 
and discovery of data-driven biomedical insights.

Expected Benefits of Analytics Workbench:
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A cloud-based analytics environment 
where researchers and data scientists 
can access a suite of integrated analytics 
tools and cloud computing resources to 
participate in data challenges and AI 
innovation.

Future Functionality: Analytics Workbench 



Visit our website for more information on our data-centric movement 
and to learn more about our past data-challenges

• Develop tools, approaches, models and/or methods to increase data 

interoperability and usability for artificial intelligence (AI) and machine 

learning (ML) applications

• Augment and enhance existing data for future secondary research, 

including data-driven discovery by AI/ML researchers

• Discover innovative approaches to enhance the utility of datasets for 

AI/ML applications

Goals of NIDDK-CR Data-science centric challenge series

NIDDK-CR Data Science Centric Challenge 
Series



Upcoming Webinars

• Aims to accelerate data science and AI-driven biomedical research by fostering collaboration between 
biomedical researchers and experts in the field

• Monthly webinar held on the last Thursday of each month

Learn more about the webinar series, register for future webinars, and access past webinars 
materials and recordings 

• Today – Different privacy preserving techniques and implications for researchers

• July 31 – Challenges, opportunities, and considerations for secondary researchers using electronic health 
records and real-world data sources

• August 28 – Impact and innovations realized

Secondary Data Science and Meet the Expert 
Webinar Series

About the Series



Meet the Experts

Anya Dabic is a Health Data Scientist at Booz Allen Hamilton that specializes 
in scientific data management and stewardship. She co-authored two public 
reports for the NIH NICHD on feasibility of leveraging privacy preserving 
record linkage (PPRL) for linking pediatric datasets across HHS. She has also 
supported various data management and sharing programs at the National 
Institutes of Health to implement the FAIR (findable, accessible, interoperable, 
reusable) and TRUST (Transparency, Responsibility, User focus, Sustainability 
and Technology) principles for digital repositories, including the NIDDK 
Central Repository.

Shruti Gautam is a Bioinformatician and Cloud Platform developer at Booz Allen 
Hamilton. She supports genomic surveillance and outbreak detection efforts across 
the CDC account as part of the Advanced Molecular Detection program. As part of 
this work, she has supported thought-leadership and development efforts around 
safeguarding privacy while supporting data sharing and data linkage within platform. 
She has also supported the VA and NIH NIAID agencies as a clinical trial 
bioinformatician working on epigenetic and vaccine studies. 
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Agenda

▪ Importance of participant confidentiality and data privacy 

▪ Privacy Preserving Record Linkage (PPRL)
• What is record linkage and PPRL?
• Benefits and Use Cases of PPRL 
• Essential elements for PPRL
• Requirements for implementing PPRL
• PPRL resources 

▪ Differential Privacy within the Privacy Enhancing Technology toolkit
• Benefits of the methodology
• Differential privacy in real world use cases 
• Overview of the underlying math at a high level 
• Synthetic dataset generation using differential privacy 



Participant Confidentiality and Data 
Privacy

• Participant Confidentiality refers to the duty 
of researchers to protect participants’ 
identity and personal information from 
unauthorized access or disclosure. 

• Examples:

o Using secure systems to store or transmit 
data

o Removing names or identifiers before 
sharing data (de-identification)

o Certificates of Confidentiality prevent 
researchers from being forced to disclose 
data 

• Why Participant Confidentiality Matters? 
Protects participants from harm (e.g., 
discrimination, stigma), Respects autonomy, 
and Fosters trust in research.

• Data Privacy refers to the right of individuals 
(participants) to control how their personal 
information is collected, used, and shared.

• Examples:

o Obtaining informed consent before collecting 
personal data

o Participants have right to withdraw anytime

o Complying with data protection laws like 
HIPAA Privacy Rule

o Sharing data with external researchers 
requires formal agreements

• Why Data Privacy Matters? Ensures 
individuals have control over their data and 
reduces risk of breaches or misuse.

For additional information, see: https://policymanual.nih.gov/3014-107 

https://policymanual.nih.gov/3014-107


Best Practices for Protecting Participant 
Privacy When Sharing Scientific Data

• NIH has established a set of principles and best practices for protecting the 
privacy of research participants when sharing data under the NIH Policy for Data 
Management and Sharing (DMS)

• Foundational Principle

Respecting participant privacy is essential and must align with informed consent, legal, and policy 
obligations (e.g., Common Rule, HIPAA, NIH policies)

• Best Practices

✓ Apply appropriate de-identification while preserving scientific value.

✓ Establish data sharing/use agreements (oversight, responsibilities, restrictions).

✓Understand and communicate legal protections, including Certificates of Confidentiality for long-
term privacy.

For additional information, see: https://sharing.nih.gov/data-management-and-sharing-policy/protecting-participant-privacy-
when-sharing-scientific-data/principles-and-best-practices-for-protecting-participant-privacy 

https://sharing.nih.gov/data-management-and-sharing-policy/protecting-participant-privacy-when-sharing-scientific-data/principles-and-best-practices-for-protecting-participant-privacy
https://sharing.nih.gov/data-management-and-sharing-policy/protecting-participant-privacy-when-sharing-scientific-data/principles-and-best-practices-for-protecting-participant-privacy


Data De-Identification Overview

• Per Health Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy Rule, two de-
identification methods: 1) Expert Determination, and 2) Safe Harbor Method

• Data de-identification includes techniques such as redacting, masking, and recoding direct 
identifiers to anonymize participants from a research study

o Redacting may include removing or deleting an entire variable from a dataset (e.g., 
participant phone number), or a participant’s data in a study (e.g., due to lack of consent 
for data sharing)

o Masking may include replacing data with an anonymized indicator or symbol (e.g., 
“James Smith admitted to hospital 2 hours after treatment” → “[Name] / XXXXX admitted 
to hospital 2 hours after treatment”)

o Recoding may include applying a random code to anonymize data (e.g., changing site 
names from “Montgomery Hospital” to “1”, and “York Hospital” to “2”)

• It is important to note that there are several terms and techniques for de-identification; the 
main goal to protect a participant’s identity



Challenges Maintaining Participant 
Privacy

• Challenge 1: Linking datasets without exposing personal identifiers

• Challenge 2: Cross-institutional collaboration without breaching 
confidentiality

• Challenge 3: Re-identification risk when linking multiple datasets

• Challenge 4: Protecting individuals in shared or published datasets

• Challenge 5: Balancing utility and privacy

• Challenge 6: Defending against attackers with auxiliary information

99.8% of Americans can be 
correctly re-identified in any 

dataset using 15 demographic 
attributes (Rocher et al., 2019)

https://www.nature.com/articles/s41467-019-10933-3


Privacy Enhancing Technologies

PET (* Today’s Webinar) Key Approach How It Protects

PPRL * Encrypts or transforms identifiers for linkage Links data without revealing or sharing PII

Differential Privacy  * Adds statistical noise to data or outputs Prevents detection of any individual’s data

Homomorphic Encryption Allows computation on encrypted data Keeps data secure even during analysis

Secure Multiparty 
Computation

Distributes computation across parties without 
sharing data

No one party sees the whole dataset

Federated Learning Trains models locally, shares only updates Data stays at its source

• Privacy Enhancing Technologies (PETs) are tools, methods, and frameworks that 
protect sensitive information during data collection, storage, processing, linkage, and 
sharing.

• Goal: Enable data use for research and innovation without exposing individuals to 
privacy risks.

• Examples:



Privacy preserving 
record linkage (PPRL) 

Privacy Enhancing Technologies



What is record linkage?

• Record linkage is combining (or bringing together) two or more 

records that correspond to the same individual.

• Term first introduced in 1946 by Halbert Dunn of the U.S. National Bureau of 

Statistics: “Each person in the world creates a Book of Life. This Book starts with 

birth and ends with death. Record linkage is the name of the process of 

assembling the pages of this Book into a volume.” 

• Many U.S. agencies including the Census Bureau, CDC, CMS, 

Agency for Healthcare Research and Quality (AHRQ), and 

Administration for Children and Families (ACF) have been using 

record linkage for decades.



What is PPRL?

x9d3 6ap4 x9d3 mf5le2c7

Tokens are matched to identify the same 
participant across data sources

NO PII SHARED

Token Matching

Name, date of birth, SSN, sex, 
address, and other personal 
identifiers are  tokenized using 
a PPRL tool by each data source

Matched Participant

DATA SOURCES 

PRIVACY PRESERVING RECORD LINKAGE

PII SHARED

Matched Participant

DATA SOURCES 

Name, date of birth, SSN, sex, 
address, and other personal 
identifiers are directly used 
to identify the same 
participant across data 
sources 

TRADITIONAL RECORD LINKAGE

Traditional linkage uses direct PII such as 

name, date of birth, social security number, 

address, etc. to match records of an individual 

Privacy preserving record linkage (PPRL) encodes the 

PII to create one-way hashed codes (tokens), which 

are then matched to identify records of an individual.



PPRL Methodology

Data Source 1/ 
Participants 

P1.1, P1.2, P1.3

x9d3 6ap4e2c7

Tokens
 T1.1, T1.2, T1.3 

Data Source 2/ 
Participants 

P2.1, P2.2, P2.3

x9d3 mpr5

Tokens 
T2.1, T2.2, T2.3 

tq8n

x9d3 6ap4e2c7

Tokens
 T1.1, T1.2, T1.3 

x9d3 mpr5

Tokens 
T2.1, T2.2, T2.3 

tq8n
Tokens T1.2 = T2.1

(Participant 
P1.2=P2.1 = AXM)

x9d3 x9d3

Matched Participant AXM
(Participant P1.2 and Participant 

P2.1 Records Linked)

Each Data Source (1st Party) encodes their 
study participant’s PII to generate de-identified  
tokens using a PPRL tool  and sends the tokens 

to the Honest Broker (2nd Party)

Honest Broker matches the tokens and 
generates a Linkage Map with a unique de-
identified ID for each matched Participant 
and sends to the Data Linker (3rd Party or 

the respective Data Sources)

DATA SOURCES

Data Linker ‘links’ the de-identified datasets 
for the matched participant from Data 

Sources A and B

HONEST BROKER DATA LINKER

• Tokens generated on the same set of PII using the same hashing algorithm will be identical across data sources 

allowing them to be matched

• A three-party PPRL model where an honest broker performs token matching provides an additional layer of security 

between PII and the actual data



PPRL Benefits and Use Cases

BENEFITSDATA SOURCES

Electronic 
Health Records 

Claims Data

Mortality Data -Omics Data

Pharmacy Data Registry Data

Images Wearable Data

Laboratory 
Data

Patient 
Reported 
Outcomes

Broader sharing of datasets of 
a particular individual without 

sharing their PII

Avoid costly duplication of 
data, such as genomic data

USE CASES

Link case and vaccination data for infectious diseases
EX: CDC, N3C

Disease Surveillance

Link EHR and wearable data across a research cohort
EX: NIH AOU Program
Clinical Research

Link outcome and EHR data for product surveillance 
EX: FDA Sentinel

Medical Device & Drug Monitoring

Link – omics and EHR data to get more comprehensive 
dataset on an individual 

Precision Medicine

Link registry data across state/local jurisdictions 
EX: NCI SEER

National Patient Registries

Enrich data by linking 
multimodal (different types of) 

data collected 

Address or track a patient’s or 
participant’s journey 

(longitudinally) through health 
care and research



Essential elements for PPRL

PARTICIPANTS

DATA PLATFORM DATA

PPRL TOOLGOVERNANCE

• Five essential elements must be addressed when considering PPRL – participants, data, PPRL tool, data 
governance, and data platform  

• These components intersect at various points to address real world use cases effectively and efficiently



Requirements for Implementing PPRL

Participants 
• Do the participants you are engaging for your study understand the benefits of linking their data with other data?
• Have they consented to linking? If not, can you get the consent, a waiver of consent, or approval from an institutional 

review board (IRB) or an equivalent human subjects privacy board to link their data?

Data
• What is the scope of linkage (i.e., what types of data do you need from other sources for the linkage)?
• Who has that data and can you gain access to the data? 
• What is the quality of the data? Is the PII and data standardized for linkage? 

Governance
• What governance (policies, terms, and conditions for use) do  you need to comply with for accessing and linking the data 

and sharing and/or using the linked data? 
• What data disclosure methods will you use to mitigate re-identification risk of the linked data? 

PPRL Tool
• Which PPRL tool can you use with the PII you have in your data?
• Is the tool freely available (open source) or proprietary? If proprietary, what are the licensing costs? 
• Can the tool scale up to accommodate increasing volumes of data?

Data Platform
• Do you have a data platform to store the data and provision the linked data to end users to access and use? 
• Does the platform have the appropriate security controls in compliance with federal data and system policies? 
• Is the platform scalable and adaptable to growing needs of users, including data types and volume ? 



Open Source PPRL Tools

Tool Name Description

Carduus (from DataBricks) The Open Privacy Preserving Record Linkage (OPPRL) protocol is a free and open standard for 
replacing personally identifiable information (PII) with encrypted tokens in order to preserve the 
privacy of data subjects. 

ANONLINK Anonlink is an open source (Apache 2.0) suite of technologies that allows organizations to carry out 
PPRL. It uses cryptographic hashes, blocking, and Bloom filters. Anonlink is written in C++ and 
provides an interface to Python. Anonlink is modular, consisting of different libraries for generating 
hashes, calculating similarity scores, and offering an entity service from which the clients can 
request mappings.

GRLC /PPRL R Package German Record Linkage Center (GRLC) PPRL R Package is an open source (available for 
free on CRAN, GPL-3) toolbox developed by GRLC for deterministic, probabilistic, and 
privacy-preserving record linkage techniques using R. It combines Merge ToolBox with 
current privacy-preserving techniques

PRIMAT PRIMAT (Private Matching Toolbox) is an open source (Apache 2.0) toolbox developed by 
the Database Group of the University of Leipzig, Germany, for the definition and execution of 
PPRL workflows. It offers several components for data owners and the central linkage unit 
that provides state-of-the-art PPRL methods, including Bloom-filter-based encoding and 
locality-sensitive hashing-based blocking, metric space filtering, post-processing, and more.

https://marketplace.databricks.com/details/60ba1979-3447-4cea-98d5-3ae0a7b6b4ac/Spindle-Health_Carduus-Tokenization-Software-Open-Privacy-Preserving-Record-Linkage-
https://pypi.org/project/anonlink/
https://www.record-linkage.de/services/privacy-preserving-record-linkage-r-package-pprl/index.html
https://git.informatik.uni-leipzig.de/dbs/pprl/primat


PPRL resources

1. PPRL for Pediatric COVID-19 Studies, Final Report, NICHD 2022

• Provides a Record Linkage Implementation Checklist to guides users who are interested in linking 
data through governance and technical considerations for designing and implementing a record 
linkage strategy. 

2. Patient-Centered Outcomes Research Trust Fund Pediatric Record Linkage Governance Assessment, 
Final Report, NICHD 2023 

• Provides a data governance information framework to assess two or more datasets can be linked 
and if so, what governance applies to linking and the linked dataset

3. White House Office of Science and Technology Policy Report on the National Strategy to Advance 
Privacy-preserving Data Sharing and Analytics

external link

external link

external link

external link

https://www.nichd.nih.gov/sites/default/files/inline-files/NICHD_ODSS_PPRL_for_Pediatric_COVID-19_Studies_Public_Final_Report_508.pdf
https://github.com/NIH-NICHD-Ecosystem/E2_Record-Linkage-Implementation-Checklist/blob/main/README.md
https://www.nichd.nih.gov/sites/default/files/inline-files/PCORTF_Pediatric_Record_Linkage_Governance_Assessment_Formatted120423.pdf
https://www.nichd.nih.gov/sites/default/files/inline-files/PCORTF_Pediatric_Record_Linkage_Governance_Assessment_Formatted120423.pdf
https://www.nitrd.gov/pubs/National-Strategy-to-Advance-Privacy-Preserving-Data-Sharing-and-Analytics.pdf
https://www.nitrd.gov/pubs/National-Strategy-to-Advance-Privacy-Preserving-Data-Sharing-and-Analytics.pdf
https://www.nichd.nih.gov/external-disclaimer
https://www.nichd.nih.gov/external-disclaimer
https://www.nichd.nih.gov/external-disclaimer
https://www.nichd.nih.gov/external-disclaimer


Differential Privacy

Privacy Enhancing Technologies



Privacy Enhancing Technologies: 
Differential Privacy

25Copyright © 2022 Booz Allen Hamilton Inc. Internal

Differential Privacy is a rigorous mathematical definition of privacy, formally guaranteeing that 
individual-level information about participants in a database is not identifiable.

Example: An algorithm that analyzes a dataset and computes statistics about it – the algorithm is differentially private if by 
looking at the output, one cannot tell whether any individual's data was included in the original dataset or not.

• Accomplished by injecting noise (random statistical variations) into the data.

• The programming code can be made public, meaning differential privacy is transparent to users. The only information 
generally not published is the exact value of noise added to given data points.

• Enables organizations to aggregate and analyze data to learn trends, but in a way that protects the privacy of individuals 
who contributed their data. 

Building trust in a way that is demonstrable to users…

Taken one step further → differential privacy can be used to generate differentially privatized 
synthetic datasets



Benefits of Differential Privacy 

“Differential privacy allows the [US Census] Bureau to protect against increasingly sophisticated reconstruction and 
reidentification attacks that threaten the confidentiality of individual census responses.” 

    – Prof Cynthia Dwork considered one of the founders of Differential Privacy

26© 2020 Booz Allen Hamilton Inc. All rights Reserved. Internal

Benefits:

• Resiliency – Unlike prior methods of table suppression 
or record swapping, differentially private data can be 
published, analyzed, and linked to other data without 
any increased risk of disclosure.

• Transparency – The programming code and decisions 
for differential privacy can be made available to the 
public and/or users.

• Protection for All Data – Assumes all information is 
identifying information, eliminating the challenge of 
flagging only identifying elements.

• Trust: Informing users that differential privacy is in use 
alleviates confidentiality concerns and encourages 
participation (in use by Apple, Google, Census 
Bureau).

• Record swapping 
• Records with similar characteristics but different 

geographic identifiers (or other identifying attributes) 
are matched. The values of non-key attributes (e.g., 
age, race, household characteristics) are then swapped 
between these matched records.

• Table suppression 
• Table suppression is a data privacy technique where 

information, specifically from individual cells or 
rows/columns in a table, is removed to protect 
confidential information and prevent the identification 
of individuals.

https://www2.census.gov/about/policies/2020-03-05-differential-privacy.pdf


Differential Privacy Out in the Real World

27© 2020 Booz Allen Hamilton Inc. All rights Reserved. Internal

Local Differential Privacy Central Differential 
Privacy

Integration of statistical 
noise

On the user’s device After raw data has been 
collected

Trust assumptions No trust required – the 
data collector does not see 
real data

Users must trust collectors 

Utility Lower 
Noise is at the individual 
level

Higher 
Noise integrated at 
aggregated data table level 

Deployed? Apple, Google US Census 



Traditional use of Differential Privacy at Census
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The Census Act requires the U.S. Census Bureau to protect respondent 
confidentiality at every stage of the data lifecycle. Information about 
specific individuals, households, or businesses cannot be revealed, in 
published statistics or otherwise.

• Disclosure avoidance is the process used by the Census Bureau to protect the 
confidentiality of respondents’ personal information.

• The Census Bureau balances the need to collect and report the data with the 
statutory obligation to protect it.

• The Census has deployed different methods to fulfill this 
requirement, most recently with differential privacy.

The Census Bureau’s recently adopted Disclosure Avoidance System employs a two-step process within a 
framework known as the TopDown Algorithm to protect respondent information:
1. Differential Privacy Algorithms: These inject noise into the data.

• The level of noise introduced is guided by a “privacy loss budget” that defines the upper bound of 
privacy loss that can occur. (In this case 𝜺 = 2.47)

2. Post-Processing: This step imposes certain consistencies onto the data (ex. Ensuring that the population 
totals for counties within a state sum to the state’s total population) to make it more usable.

Research shows respondent 
concern for privacy is among the 
top reasons for unwillingness to 
participate in censuses. 

Making demonstrating privacy a 
mission imperative for the Census 
Bureau.



How does this work? 
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*Graphic from NIST; Differential Privacy for Privacy Preserving Data Analysis

Differential Privacy guarantees to users that the output of a differentially private 
analysis will be roughly the same, whether they contribute their individual data or 
not.

A mechanism, denoted as M above, is a target function (ex: mean) + noise

The goal is to force outputs to be “noisy” so that no individual has much 
influence. 

There is a trade-off between privacy and utility 

Example: Calculate the hazard of patients experiencing kidney 
failure or death in individuals with chronic kidney disease
1. Use real world data to compute

• d(t): number of events at time t
• n(t): number still at risk before time t 

2. Add laplace noise to d(t) and n(t) → Analysis 
• d’(t) = d(t) + laplace(1/𝜀)
• n’(t) = n(t) + laplace(1/𝜀)

3. Use privatized counts to estimate the hazard → Answer

• ℎ′(𝑡) =
𝑑′(𝑡)

𝑛′(𝑡)

4. Compare the hazard distribution between 2 neighboring 
datasets ie 𝐷1 = a + Joe vs. 𝐷2 = a 

• To achieve complete privacy the hazard estimate 
would not change with the presence or absence of 
Joe’s data



A look into the tuning parameters 

Epsilon

• Factor that limits the deviation of the output ie regulates how much the 
output of the mechanism can vary between two neighboring databases

• If person A’s data is in the dataset vs. removed from the dataset, the 
probability of getting any output changes at most by a factor of 𝑒𝜀 

• Small epsilon = higher privacy but potentially worse accuracy of output

• US Census 2020: 𝜺 = 4

• Every new query weakens overall privacy and increases 𝜺 as attackers 
can combine information across outputs 
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𝑃 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 𝐼𝑛𝑝𝑢𝑡𝑑𝑎𝑡𝑎𝑠𝑒𝑡 1 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡 ≤  𝑒𝜀  ∗  𝑃[𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 𝐼𝑛𝑝𝑢𝑡𝑑𝑎𝑡𝑎𝑠𝑒𝑡 1 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡]

𝜺 Details

0.01 Heavy noise, strong privacy 

0.1 Strong protection, strong 
privacy 

1 Moderate privacy practical 
for many use cases

5-
10

Weak privacy; used when 
data is less sensitive and 
when utility of data is critical

• There is a trade off between data privacy and data utility 
• Lower epsilon, increased noise, stronger privacy, but decreased data utility in terms of 

generating insights from this data
• Important to balance introducing privacy guarantees while ensuring insights generated 

from the data are scientifically sound. 
• We can reduce the impact of introducing noise by collecting larger datasets allowing 

key patterns to emerge despite noise integration 



Optimizing your privacy budget

Before defining epsilon consider: 
• How sensitive is your raw dataset to any 

particular individual/data point? 
• High sensitivity → larger impact of a row on 

the output of a mechanism → higher epsilon 
• Who are your data users? External use vs. 

internal controlled access 
• What is the intended use of query results? 
• What is the sample size of your study? 

• Methods to gauge sensitivity:
• K-anonymity: any person’s records cannot 

be distinguished from at least k-1 other 
records based on quasi-identifiers  

• L-diversity: extension of k-anonymity; for 
each group of k records that share the same 
quasi-identifiers there are at least L different 
values for sensitive attributes



Differentially Privatized Synthetic 
Datasets

Differential privatized synthetic data enables NIH to 
provision datasets with a privacy guarantee.
• protects the privacy of individuals in datasets
• allows increased and faster access of researchers 

to health care research data
• addresses the lack of realistic data for software 

development and testing

Conventional Anonymization process leaves the 
door for privacy loss through linkage attack 
• Replace traditional identifiable information.
• Unknown level of privacy guarantee.

Current State: 
   Shares Real Patient Data without PHI/PII

Future State: 
  Differentially Privatized Synthetic Data Generation 

32https://pmc.ncbi.nlm.nih.gov/articles/PMC9931305/



Generating Synthetic Data 

1. Understand the basics of Differential Privacy
• Set privacy parameters such as Epsilon to ensure 

2. Data cleaning, imputation, and domain set up: 
• Data is consistent 
• Define the possible range for each variable 

3. Build a privatized model of the overall population 
• Marginals Method: Evaluate the summary of relationships between variables within a dataset with added 

DP noise
• Probabilistic Graphical Models (PGMs): learn the dependencies between variables, privatize the model and 

then sample synthetic data 
• Bayesian Networks
• Markov Random Fields

• Differentially Private Generative Adversarial Networks: Train a neural network generator with noise added 
to gradients or outputs

4. Create fake individuals sampled from the privatized model  

Steps to generate Differentially Privatized Synthetic Data
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Scenario: You manage a large, NIH-funded cohort study using electronic health record (EHR) data to track patients with 
Type 2 diabetes across multiple health systems. A collaborating research team requests patient-level data to develop 
models predicting risk of diabetes-related complications (e.g., kidney disease, retinopathy). Requested variables include 
lab values (A1C, creatinine), medication history, comorbidities, and demographic factors 
How can differential privacy be used in this scenario?

Patient  ID Age Gender A1C 
levels 

BMI

A 52 F 6.5 28

B 44 M 8.1 31

…
Age 
Group

Gender BMI A1C Counts Noisy 
Counts

40-55 F Overweight 6.5-7 200 222

40-55 M Overweight 6.5-7 500 512

40-55 M Obese 7-7.5 400 420

…

Use noisy counts 
data to and 
sample ”people” 
based on 
groupings

Overview of A Simple Example Pipeline



Overview of A Simple Example Pipeline

Is your synthetic data reflective of the correlations and features found in the original dataset?  

• Compare feature distributions of synthetic vs. real data (correlation, ML model performance) 

• Compare noise of synthesis to noise of sampling error 

• Benefits: 

• Low risk of individuals being re-identified as the data is synthetic 

• Low risk of drawing incorrect conclusion
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Resulting dataset that 
contains synthetic 
data based on original 
data features 

Scenario: You manage a large, NIH-funded cohort study using electronic health record (EHR) data to track patients with 
Type 2 diabetes across multiple health systems. A collaborating research team requests patient-level data to develop 
models predicting risk of diabetes-related complications (e.g., kidney disease, retinopathy). Requested variables include 
lab values (A1C, creatinine), medication history, comorbidities, and demographic factors 
How can differential privacy be used in this scenario?

Patient  ID Age Gender A1C 
levels 

BMI

ABCD 41 F 6.7 27

EFGH 55 M 7.2 34

…



Open-Source Differential Privacy Packages

Library Language(s)
Noise 
Mechanism(s)

Primary Use Case Key Features

Google 
Differential 
Privacy
(+ PyDP 
wrapper)

C++, Python, Go, 
Java, Apache 
Beam

Laplace, Gaussian
Descriptive Statistics, 
Analytics

Used for releasing aggregate statistics (counts, sums, means) 
on large datasets while preserving user privacy. Ideal for 
government, enterprise reporting, or dashboards; Scalable; 
Widely adopted in data analysis workflows; Configurable ε/δ 
settings

brubinstein
/diffpriv

R
Laplace, Gaussian, 
Exponential, 
Bernstein

Statistical DP for 
numeric & categorical 
data;

Provides multiple DP mechanisms, supports custom function 
privatization, ideal for research and educational purposes, 
well-documented with R vignettes.

IBM 
DiffPrivLib

Python Laplace, Gaussian
Machine Learning (DP 
models)

DP-compliant versions of scikit-learn estimator; Easy Python 
integration for ML and statistics; Enables researchers and 
practitioners to train and evaluate machine learning models 
under differential privacy constraints.

TensorFlow 
Privacy

Python 
(TensorFlow)

Gaussian
Deep Learning with 
DP

Used in production ML pipelines to ensure training data 
remains private, especially in sensitive domains like 
healthcare, finance, and mobile personalization.
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https://github.com/google/differential-privacy
https://github.com/google/differential-privacy
https://github.com/google/differential-privacy
https://github.com/brubinstein/diffpriv/tree/master
https://github.com/IBM/differential-privacy-library
https://github.com/IBM/differential-privacy-library
https://github.com/tensorflow/privacy
https://github.com/tensorflow/privacy


Summary

• Today’s best practices (e.g., under NIH DMS policy) 
emphasize controlled access and ongoing governance that 
can evolve as risks change — not one-time de-identification 
+ release.

• PETs like differential privacy and PPRL provide stronger, 
formal privacy protections beyond de-identification.

• There's no one-size-fits-all solution: organizations must 
evaluate technical feasibility, governance readiness, and 
legal alignment. Often, combining PETs may offer the best 
solution for complex privacy challenges.



Q&A and Poll



Contacts:

• Anya Dabic - dabic_andrijana@bah.com 

• Shruti Gautam - gautam_shruti@bah.com 

Upcoming Webinar: Challenges, Opportunities, and Considerations for 
Researchers using Electronic Health Records and Real-World Data Sources

• Date: July 31st from 2-3pm ET

• Experts: Datavant

• Scan the QR code register

Thank You!

mailto:dabic_andrijana@bah.com
mailto:gautam_shruti@bah.com
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